Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions.

نویسندگان

  • Nagalingam Rajamanickam
  • Sudesh Kumari
  • Venkat Kalyan Vendra
  • Brandon W Lavery
  • Joshua Spurgeon
  • Thad Druffel
  • Mahendra K Sunkara
چکیده

Degradation of metal-organic halide perovskites when exposed to ambient conditions is a crucial issue that needs to be addressed for commercial viability of perovskite solar cells (PSCs). Here, a concept of encapsulating CH3NH3PbI3 perovskite crystals with a multi-functional graphene-polyaniline (PANI) composite coating to protect the perovskite against degradation from moisture, oxygen and UV light is presented. Hole-conducting polymers containing 2D layered sheet materials are presented here as multi-functional materials with oxygen and moisture impermeability. Specific studies involving PANI and graphene composites as coatings for perovskite crystals exhibited resistance to moisture and oxygen under continued exposure to UV and visible light. Most importantly, no perovskite degradation was observed even after 96 h of exposure of the PSCs to extremely high humidity (99% relative humidity). Our observations and results on perovskite protection with graphene/conducting polymer composites open up opportunities for glove-box-free and atmospheric processing of PSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity

Poor stability of organic-inorganic halide perovskite materials in humid condition has hindered the success of perovskite solar cells in real applications since controlled atmosphere is required for device fabrication and operation, and there is a lack of effective solutions to this problem until now. Here we report the use of lead (II) thiocyanate (Pb(SCN)2) precursor in preparing perovskite s...

متن کامل

افزایش پایداری سلول‌های خورشیدی با استفاده از لایه‌های جاذب پروسکایتی CH3NH3PbI3 آلاییده با برم

The CH3NH3PbI3 is one of the most widely used and famous lead halide perovskite absorber layer for using in perovskite solar cells. One of the ways to deal with the instability problem of this perovskite structure in environmental condition is bromide doping in this composition. In this work, the structural and optical properties of the bromide doped CH3NH3PbI3 absorber layers were studied as w...

متن کامل

Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells

Organometal lead halide perovskites have been widely used as the light harvester for high-performance solar cells. However, typical perovskites of methylammonium lead halides (CH3NH3PbX3, X=Cl, Br, I) are usually sensitive to moisture in ambient air, and thus require an inert atmosphere to process. Here we demonstrate a moisture-induced transformation of perovskite crystals in a triple-layer sc...

متن کامل

Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the p...

متن کامل

Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.

We report for the first time the use of a perovskite (CH3NH3PbI3) absorber in combination with ZnO nanorod arrays (NRAs) for solar cell applications. The perovskite material has a higher absorption coefficient than molecular dye sensitizers, gives better solar cell stability, and is therefore more suited as a sensitizer for ZnO NRAs. A solar cell efficiency of 5.0% was achieved under 1000 W m(-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 23  شماره 

صفحات  -

تاریخ انتشار 2016